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Abstract For an N-compartmental system, with irreversible drug loss 
from the sampled compartment, the equilibrium concentration, C ( m ) ,  
obtained with a zero-order drug input is related to the total amount of 
drug in the system, 7', by ('(a) V = T .  The scalar V is the volume of dis- 
tribution of the corresponding closed system. The moment functions of 
the open system define V. and hence T is directly calculable. The deri- 
vation is general in the sense that the topology of the system is not 
specified and no functional form for C ( t )  is required. 
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The apparent drug distribution volume of an irreducible 
compartmental system, with a unit impulse drug input into 
a sampled compartment, is given by the ratio of the first 
statistical moment to the definite integral of the sampled 
concentration function (1). This apparent drug distribu- 
tion volume is identical to the apparent volume of the 
corresponding closed system if drug elimination occurs 
exclusively from the sampled compartment (I). 

In the present paper a relationship between the appar- 
ent volume of distribution of a compartmental system and 
the total amount of drug in the system, obtained with a 
zero-order drug input, is derived. The derivation does not 
require any conditions on ( a )  the eigenvalues of the system, 
( b )  the topology of the system, or (c) the intercompart- 
mental rate constants. However, it is assumed that  drug 
input is into the sampled compartment and that  drug 
elimination occurs only from the sampled compartment. 

THEOHETICAL 

Consider an arbitrary set of N interconnected compartments in which 
it is possible for material in compartment; to reach each of i compart- 
ments (i, ;el, 2 . . . N: i # j ) .  Such a compartmental system does not 
contain any sinks, disjointed sets of  compartments, or  suhsystems. For 
such a system: 

(Eq. 1) 

where X ,  (jc1,2. . . N )  is the amount of drug in compartment j, and X ,  
is the first derivative of X ,  with respect to time. The off-diagonal ele- 
ments of matrix A ,  k,, and k,,, are inlercompartmental rate constants 
lor drug transport from compartment j to compartment i and from 
compartment i to compartment j ,  respectively, j and i t1 ,2 .  . . N i # j. 
130th k, ,  and k,, are 10, and i f  a particular kj, = 0 the status of kj, cannot 
he inferred. Consequently, matrix A has no specified topological ar- 
rangement of the compartments. The diagonal elements of matrix A are 
defined by: 

XN k l . v  k 2 ~  k:l.v E R  X N  

(Eq. 2) 

(je1,2.. . N )  

where kjo  (kjo 2 0) is the rate constant for irreversible drug 106s from the 
system oia compartment j. For an open Compartmental system a t  least 
one k," is greater than zero, and for a closed compartmental system all 
values of k,o are equal to zero. 

For an open compartmental system the coefficient matrix A is a 
dominant diagonal matrix with respect to the columns and is an irre- 
ducible matrix (2 ,3) .  Since the off-diagonal elements of A are non-neg- 
ative, each X , ( t )  is greater than or equal to zero for all values of t  for any 
set of non-negative initial conditions or any non-negative input function 
(4). Further, since matrix A is column dominant it follows from 
Gerschgorin's eigenvalue theorem ( 5 )  that all the characteristic values 
of A have negative real parts. Consequently, X , ( m )  = 0, jc1 ,2 . .  . N ,  for 
any set of non-negative initial conditions. Combining the non-negativity 
of X j ( t )  and the irreducibility of matrix A no X j ( t )  is zero for all values 
o f t  when the initial conditions are non-negative and a t  least one initial 
condition is >O. The latter conditions guarantee that J;Xj(t) d t  exists 
for all values of j and that each integral is greater than zero for any set 
of non-negative initial conditions with a t  least one positive initial con- 
dition. Theorems concerning the determinant of an irreducible matrix 
are known (6); thus, ( A  I # 0 if at least one k,o >O and ( A  I = 0 if all kjo 
=Oforjc1,2 . . .  N .  

A special form of matrix A is one in which only one value of kjo is 
greater than zero. Considering such a system, and without loss of gener- 
ality, let k l o  > 0 and k , ~  = 0 for j c 2 , 3 . .  . N .  In this case the apparent 
volume of distribution ( V )  of the irreducible compartmental system is 
given by: 

D r - t C ( t ) d t  
Jo V =  (Eq. 3) 

where D is an impulse drug input into compartment 1 and C ( t )  is the 
resulting drug concentration-time function observed in compartment 
1 (1) .  This apparent volume is related to the total amount of drug in the 
body by the following theorem. 

Theorem-For an irreducible compartmental system with irreversible 
drug loss from one compartment only, e.g., compartment 1, and zero- 
order drug input K into this compartment, then the limiting concentra- 
tion, C l  ( m )  in the sampled compartment (compartment 1) is related to 
the total mass of drug in the system, T ( m ) ,  by: 

C1(m)  - v = T ( m )  (Eq. 4) 

where V is the apparent volume of distribution of the compartmental 
system as defined by Eq. 3. 

Proof-To establish a proof, an expression for the scalar volume (v) 
that maps the limiting concentration, Cl(-) ,  in compartment 1 to the 
total mass of drug in the system as t * - is required. If this latter volume 
can be shown to be identical to V then a proof is established. 

Expressions for T ( m )  and v can be obtained as follows. By standard 
Laplace transform theory: 

(Eq. 5 )  

(jc,l,B,. . . N )  
where x,(s) is the Laplace transform of X,( t ) ,  s the Laplace variable, MI, 
the matrix obtained by deleting row 1 and column j from matrix A, and 
I is the identity matrix. 

Expanding the polynomials in Eq. 5, then: 
K (-l) l+'(  . ~ N - ' + ~ l ~ N - 2 . . . a N - - 2 ~ +  ( - l ) N - ' l M l j l )  

x,(s) = -. 
9 (sN t b l s N - ' .  . . bN-1.S + ( - l )NIAJ)  

(Eq. 6) 
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where b, and a, are (-1)’ times the sum of the determinants of all the 
i-squared principle minors of matrix A and matrix MI,,  respectively. The 
coefficients b, (rt1,2 . . . N - 1 )  and ( - l ) N I A (  are greater than zero 
(1). 

Applying the final value theorem of Laplace transforms: 

b c 1 , 2 . .  . N )  Lim s - *  0 ( - l )NIAl  
(Eq.7) 

XI(-) = S ’ X , ( S )  = K ( - l P + 1 ( - l ) N - l  

The numerator terms in FA. 7 are all positive. The latter follows from the 
fact that I -A(  has all positive cofactors (4), and since - l (N- l ) l  MI, I = 
I-M1,1, the determinants - I ( l+ l ) l -M~,I  are cofactorsof I -A l .  Con- 
sequently X,(m) > 0 for all values of cjcl,:!. . . N) when K > 0. 

is given by ZFl  X,(m)  
= T ( m )  and Cl(m) = Xl(m)/V1 where Vl is the volume ofcompartment 
1. Consequently, the scalar that maps Cl(m) to T(-) IS given by ap- 
plication of Eq. 7 as: 

The total amount of drug in the system EL$ 1 - 
N c ( - l P + l ( - l ) N - ’  IMlll 

(Eq. 8)  

The latter scalar volume v is equivalent to the apparent volume of dis- 
tribution (V).  This identity can be established as follows. Consider the 
corresponding closed compartmental system ( k l o  = 0) with a unit impulse 
input into compartment I .  In this case, by standard Laplace transform 
theory: 

= ( -I) ,+’S [ s N - l  t al.yN-*. . . . ~ ~ - 2 s  + (-l)N-’IMi,I] 
[ s N  + h l s N - l . .  . . 6 ~ - 1 s  t (-1)” A[ ]  

Lim 
s -0 

(Eq. 9)  

where 6, is (-1)i times the sum of the determinants of all the i-squared 
principal minors of A, A is the coefficient matrix of the closed system (i e . ,  
all k,o = 0) and X,(m)  is the mass of drug in compartmentj of the closed 
system as t - m. Since IAl  = 0, the limits in Eq. 9 are obtained by the 
L’Hospital rule, and applying Eq. 9: 

Since the system is closed the total amount of drug in the system a t  any 
time is unity, this gives the unity identity of F4. 10. 

Substituting Eq. 10 intqEq. 8 gives: 

(Eq. 11) 

The quotient expressed in Eq. 11 has been shown previously (1) to be 
equivalent to the apparent volume of distribution of a compartmental 
system, whence v = V, from which Eq. 4 follows and thus completes the 
proof. 

DISCUSSION 

The apparent volume of distribution specified by Eq. 3 does not assume 
any particular functional form for C ( t ) .  After an impulse input (D), V 
can be calculated by standard numerical methods. Additionally, V can 
be calculated for any given input function into the central compartment 
and does not necessitate the use of an intravenous bolus drug dose (1). 

As is stated in the given theorem the apparent volume can be used to 
calculate the total amount of drug in the system a t  steady state when a 
constant intravenous infusion is administered: conversely if the amount 
of drug in the system and C(-) are known, then V can be calculated. 

The volume of distribution of a compartmental system is the apparent 
volume of the completely closed system (i .e. ,  when no irreversible drug 
loss occurs). It is defined as that scalar quantity which maps the equi- 

librium concentration, in the sampled compartment of the closed system, 
to the amount of drug in the closed system after a finite drug input (1). 
For an open system with elimination occurring only from the observed 
compartment this volume is given by Eq. 3 when an impulse input (D) 
is used. 

Riggs (7) introduced, hut without reference to a closed system, the term 
steady-state distribution volume. This volume of distribution is defined 
specifically with respect to a two-compartment open model and it is the 
ratio of the total drug content in the system to the drug concentration 
in the central compartment, these measurements being taken a t  a time 
when the second compartment contains the maximum amount of drug. 
For a two-compartmental model with drug elimination occurring only 
from the central compartment the latter definition coincides with the 
definition based on a closed system. However, in an irreducible open 
Compartmental system with more than two compartments, all of the 
peripheral compartments will not necessarily be in equilibrium with the 
central compartment a t  the same time. Consequently the steady-state 
distribution volume (7) cannot be arbitrarily extended to include a gen- 
eral N-compartmental system of unknown topology. For a two-com- 
partmental model the use of permeability coefficients for drug transfer 
(8) or partition coefficients (4) also gives an identical distribution volume 
to that of the closed system. The concept of permeability and partition 
coefficients could be extended to larger compartmental models such as 
mammillary and catenary models. However, the notion of partitioning 
in systems containing irreversible drug cycles is inappropriate. No such 
difficulties arise when the closed system is used as the reference. 

Since previous analyses are not general it is essential, for a clear un- 
derstanding of drug distribution volume, to have a general theorem that 
relates the distribution volume to the total amount of drug in an open 
system of unknown topology a t  steady state. I t  could be argued that it 
is intuitively obvious that the volume of distribution of a closed system 
maps the equilibrium concentration of the sampled compartment ob- 
tained with a zero-order drug input to the total amount of drug in the 
system. However, the reverse opinion has been held previously (9, 10) 
and an erroneous proof has been presented to show that the distribution 
volume does not have a direct relationship to the total amount of drug 
in the system a t  steady state (10). 

The derivation of the theorem presented in the text is general in the 
sense that no knowledge of the topology of the system is required and 
consequently no constraints on the eigenvalues of the system are required 
nor are any constraints on intercompartmental rate constants required. 
However, it is assumed that irreversible drug loss from the system occurs 
only from the sampled compartment. 

Although the term compartment has been used in the derivation, the 
term is merely a convenience and should not he interpreted literally as 
a circumscribable region of space. Frequently the term noncompart- 
mental is applied incorrectly to pharmacokinetic theory when topological 
independence is intended (11,121. 
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